GLOBAL RISK SPILLOVERS TO INTERNATIONAL EQUITY MARKETS: AN APPLICATION TO NON-PARAMETRIC CAUSALITY IN QUANTILES
DOI:
https://doi.org/10.37435/nbr.v6i1.75Keywords:
Global risk spillover, non-parametric causality in quantiles, Granger causality in quantiles, equity marketsAbstract
Purpose: This study examines the global risk spillover to International Equity Markets e.g., gold volatility index (GVX), crude oil volatility index (OVX), Volatility Index (VIX), Treasury Bills (TVX), Volatility of volatility index (VVIX), and Èconomic Ƥolicy Ưncertainty index (EPU).
Design/Methodology: Following non-parametric causality in quantiles method we utilize weekly data of Canada, Japan, the UK, and the USA from June 12, 2008, till September 29, 2018. The Granger causality in quantiles detects and quantifies both linear and non-linear causal effects between random variables.
Findings: Results of the study shows strong correlations between volatility of volatility index and stock markets. whereas weak correlation exist between Èconomic Ƥolicy Ưncertainity and stock markets. Increase in uncertainty indices cause a decline in equity stock markets. Uncertainty indices does not cause volatility in stock returns of TSX, TSE, LSE and NYSE. VVIX granger cause volatility of Japanese stock market returns. There is no evidence of risk spillover from uncertainty to international equity markets. uncertainty do not cause volatility in stock market returns of Canada, Japan, UK and USA.
Originality: The results provide important insights for asset allocation, investment portfolio, and risk management to minimize the effect of volatility spillovers. As financial spillover amplifies in the absence of monetary stabilization, both conventional and unconventional monetary easing can increase spillover. Thus, the study would also benefit the policymakers in devising monetary policies which mitigate the influence of risk spillovers to international equity markets. The findings of the study have important implications for market regulators.
References
References
Apergis, N., Bonato, M., Gupta, R., & Kyei, C. (2018). Does geopolitical risks predict stock returns and volatility of leading defense companies? Evidence from a nonparametric approach. Defence and Peace Economics, 29(6), 684-696. https://doi.org/10.1080/10242694.2017.1292097 DOI: https://doi.org/10.1080/10242694.2017.1292097
Alsubaie, A., & Najand, M. (2009). Trading volume, time-varying conditional volatility, and asymmetric volatility spillover in the Saudi stock market. Journal of Multinational Financial Management, 19(2), 139-159. https://doi.org/10.1016/j.mulfin.2008.09.002 DOI: https://doi.org/10.1016/j.mulfin.2008.09.002
Antonakakis, N., Floros, C., & Kizys, R. (2016). Dynamic spillover effects in futures markets: UK and US evidence. International Review of Financial Analysis, 48, 406-418. https://doi.org/10.1016/j.irfa.2015.03.008 DOI: https://doi.org/10.1016/j.irfa.2015.03.008
Antonakakis, N., Chatziantoniou, I., & Filis, G. (2014). Dynamic spillovers of oil price shocks and economic policy uncertainty. Energy Economics, 44, 433-447. https://doi.org/10.1016/j.eneco.2014.05.007 DOI: https://doi.org/10.1016/j.eneco.2014.05.007
Bahloul, W., Balcilar, M., Cunado, J., & Gupta, R. (2018). The role of economic and financial uncertainties in pdashicting commodity futures returns and volatility: Evidence from a nonparametric causality-in-quantiles test. Journal of Multinational Financial Management, 45, 52-71. https://doi.org/10.1016/j.mulfin.2018.04.002 DOI: https://doi.org/10.1016/j.mulfin.2018.04.002
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The quarterly journal of economics, 131(4), 1593-1636. https://doi.org/10.1093/qje/qjw024 DOI: https://doi.org/10.1093/qje/qjw024
Bahloul, S., & Khemakhem, I. (2021). Dynamic return and volatility connectedness between commodities and Islamic stock market indices. Resources Policy, 71, 101993. https://doi.org/10.1016/j.resourpol.2021.101993 DOI: https://doi.org/10.1016/j.resourpol.2021.101993
Berger, T., & Uddin, G. S. (2016). On the dynamic dependence between equity markets, commodity futures and economic uncertainty indexes. Energy Economics, 56, 374-383. https://doi.org/10.1016/j.eneco.2016.03.024 DOI: https://doi.org/10.1016/j.eneco.2016.03.024
Balcılar, M., Demirer, R., Hammoudeh, S., & Nguyen, D. K. (2016). Risk spillovers across the energy and carbon markets and hedging strategies for carbon risk. Energy Economics, 54, 159-172. https://doi.org/10.1016/j.eneco.2015.11.003 DOI: https://doi.org/10.1016/j.eneco.2015.11.003
Balcilar, M., Gupta, R., & Pierdzioch, C. (2016). Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test. Resources Policy, 49, 74-80. https://doi.org/10.1016/j.resourpol.2016.04.004 DOI: https://doi.org/10.1016/j.resourpol.2016.04.004
Balcilar, M., Bekiros, S., & Gupta, R. (2017). The role of news-based uncertainty indices in predicting oil markets: a hybrid nonparametric quantile causality method. Empirical Economics, 53, 879-889. https://doi.org/10.1007/s00181-016-1150-0 DOI: https://doi.org/10.1007/s00181-016-1150-0
Balcilar, M., Bonato, M., Demirer, R., & Gupta, R. (2018). Geopolitical risks and stock market dynamics of the BRICS. Economic Systems, 42(2), 295-306. https://doi.org/10.1016/j.ecosys.2017.05.008 DOI: https://doi.org/10.1016/j.ecosys.2017.05.008
Bohl, M. T., & Henke, H. (2003). Trading volume and stock market volatility: The Polish case. International Review of Financial Analysis, 12(5), 513-525. https://doi.org/10.1016/S1057-5219(03)00066-8 DOI: https://doi.org/10.1016/S1057-5219(03)00066-8
Bouri, E., Cepni, O., Gabauer, D., & Gupta, R. (2021). Return connectedness across asset classes around the COVID-19 outbreak. International review of financial analysis, 73, 101646.(a) https://doi.org/10.1016/j.irfa.2020.101646 DOI: https://doi.org/10.1016/j.irfa.2020.101646
Abuzayed, B., Bouri, E., Al-Fayoumi, N., & Jalkh, N. (2021). Systemic risk spillover across global and country stock markets during the COVID-19 pandemic. Economic Analysis and Policy, 71, 180-197. https://doi.org/10.1016/j.eap.2021.04.010 DOI: https://doi.org/10.1016/j.eap.2021.04.010
Chen, X., Sun, X., & Wang, J. (2019). Dynamic spillover effect between oil prices and economic policy uncertainty in BRIC countries: A wavelet-based approach. Emerging Markets Finance and Trade, 55(12), 2703-2717. https://doi.org/10.1080/1540496X.2018.1564904 DOI: https://doi.org/10.1080/1540496X.2018.1564904
Choi, S. Y., & Hong, C. (2020). Relationship between uncertainty in the oil and stock markets before and after the shale gas revolution: Evidence from the OVX, VIX, and VKOSPI volatility indices. PloS one, 15(5), e0232508. https://doi.org/10.1371/journal.pone.0232508 DOI: https://doi.org/10.1371/journal.pone.0232508
Croitorov, O., Giovannini, M., Hohberger, S., Ratto, M., & Vogel, L. (2020). Financial spillover and global risk in a multi-region model of the world economy. Journal of Economic Behavior & Organization, 177, 185-218. https://doi.org/10.1016/j.jebo.2020.05.024 DOI: https://doi.org/10.1016/j.jebo.2020.05.024
Das, D., Kannadhasan, M., & Bhattacharyya, M. (2019). Do the emerging stock markets react to international economic policy uncertainty, geopolitical risk and financial stress alike?. The North American Journal of Economics and Finance, 48, 1-19. https://doi.org/10.1016/j.najef.2019.01.008Get rights and content DOI: https://doi.org/10.1016/j.najef.2019.01.008
Gallo, G. M., & Pacini, B. (2000). The effects of trading activity on market volatility. The European Journal of Finance, 6(2), 163-175. https://doi.org/10.1080/13518470050020824 DOI: https://doi.org/10.1080/13518470050020824
He, F., Wang, Z., & Yin, L. (2020). Asymmetric volatility spillovers between international economic policy uncertainty and the US stock market. The North American Journal of Economics and Finance, 51, 101084. https://doi.org/10.1016/j.najef.2019.101084 DOI: https://doi.org/10.1016/j.najef.2019.101084
Jitmaneeroj, B. (2018). The effect of the rebalancing horizon on the tradeoff between hedging effectiveness and transaction costs. International Review of Economics & Finance, 58, 282-298. https://doi.org/10.1016/j.iref.2018.03.027 DOI: https://doi.org/10.1016/j.iref.2018.03.027
Jin, F., Li, J., & Li, G. (2022). Modeling the linkages between Bitcoin, gold, dollar, crude oil, and stock markets: A GARCH-EVT-copula approach. Discrete Dynamics in Nature and Society, 2022. https://doi.org/10.1155/2022/8901180 DOI: https://doi.org/10.1155/2022/8901180
Jin, F., Li, J., & Li, G. (2023). Connectedness between crude oil, coal, rare earth, new energy and technology markets: a GARCH-vine-copula-EVT analysis. Applied Economics, 55(38), 4469-4485. https://doi.org/10.1080/00036846.2022.2129572 DOI: https://doi.org/10.1080/00036846.2022.2129572
Jordà, Ò., Schularick, M., Taylor, A. M., & Ward, F. (2019). Global financial cycles and risk premiums. IMF Economic Review, 67(1), 109-150. DOI: https://doi.org/10.1057/s41308-019-00077-1
Khamis Hamed Al-Yahyaee, Syed Jawad Hussain Shahzad, Walid Mensi. (2019). Tail dependence structures between economic policy uncertainty and international equity markets: Nonparametric quantiles methods. International Economics. https://doi.org/10.1016/j.inteco.2019.11.004 DOI: https://doi.org/10.1016/j.inteco.2019.11.004
Kang, S. H., & Yoon, S. M. (2016). Dynamic spillovers between Shanghai and London nonferrous metal futures markets. Finance Research Letters, 19, 181-188. https://doi.org/10.1016/j.frl.2016.07.010 DOI: https://doi.org/10.1016/j.frl.2016.07.010
Kang, S. H., & Yoon, S. M. (2019). Dynamic connectedness network in economic policy uncertainties. Applied Economics Letters, 26(1), 74-78. https://doi.org/10.1080/13504851.2018.1438580 DOI: https://doi.org/10.1080/13504851.2018.1438580
Kang, S. H., Uddin, G. S., Troster, V., & Yoon, S. M. (2019). Directional spillover effects between ASEAN and world stock markets. Journal of Multinational Financial Management, 52, 100592. https://doi.org/10.1016/j.mulfin.2019.100592 DOI: https://doi.org/10.1016/j.mulfin.2019.100592
Kannadhasan, M., & Das, D. (2020). Do Asian emerging stock markets react to international economic policy uncertainty and geopolitical risk alike? A quantile regression approach. Finance Research Letters, 34, 101276. https://doi.org/10.1016/j.frl.2019.08.024 DOI: https://doi.org/10.1016/j.frl.2019.08.024
Li, X., & Zhang, B. (2009). Price discovery for copper futures in informationally linked markets. Applied Economics Letters, 16(15), 1555-1558. https://doi.org/10.1080/13504850701578801 DOI: https://doi.org/10.1080/13504850701578801
Li, Z., & Su, Y. (2020). Dynamic spillovers between international crude oil market and China's commodity sectors: evidence from time-frequency perspective of stochastic volatility. Frontiers in Energy Research, 8, 45. https://doi.org/10.3389/fenrg.2020.00045 DOI: https://doi.org/10.3389/fenrg.2020.00045
Li, Z., Ao, Z., Mo, B. (2021). Revisiting the Valuable Roles of Global Financial Assets for International Stock Markets: Quantile Coherence and Causality-in-Quantiles Approaches. Mathematics, 9, 1750. https://doi.org/10.3390/math9151750 DOI: https://doi.org/10.3390/math9151750
Lien, D., Lee, G., Yang, L., & Zhang, Y. (2018). Volatility spillovers among the US and Asian stock markets: A comparison between the periods of Asian currency crisis and subprime cdashit crisis. The North American Journal of Economics and Finance, 46, 187-201. https://doi.org/10.1016/j.najef.2018.04.006 DOI: https://doi.org/10.1016/j.najef.2018.04.006
Liu, Q., & An, Y. (2011). Information transmission in informationally linked markets: Evidence from US and Chinese commodity futures markets. Journal of International Money and Finance, 30(5), 778-795. https://doi.org/10.1016/j.jimonfin.2011.05.006 DOI: https://doi.org/10.1016/j.jimonfin.2011.05.006
Liow, K.H., Liao, W.G., Huang, Y. (2018). Dynamics of international spillovers and interaction: evidence from financial market stress and economic policy uncertainty. Econ. Modell. 68, 96-116. https://doi.org/10.1016/j.econmod.2017.06.012 DOI: https://doi.org/10.1016/j.econmod.2017.06.012
Lovcha, Y., & Perez-Laborda, A. (2020). Dynamic frequency connectedness between oil and natural gas volatilities. Economic Modelling, 84, 181-189. https://doi.org/10.1016/j.econmod.2019.04.008 DOI: https://doi.org/10.1016/j.econmod.2019.04.008
Luo, C., Qu, Y., Su, Y., & Dong, L. (2024). Risk spillover from international crude oil markets to China’s financial markets: Evidence from extreme events and US monetary policy. The North American Journal of Economics and Finance, 70, 102041. https://doi.org/10.1016/j.najef.2023.102041 DOI: https://doi.org/10.1016/j.najef.2023.102041
Lyu, Y., Wang, P., Wei, Y., & Ke, R. (2017). Forecasting the VaR of crude oil market: do alternative distributions help?. Energy Economics, 66, 523-534. https://doi.org/10.1016/j.eneco.2017.06.015 DOI: https://doi.org/10.1016/j.eneco.2017.06.015
Man, Y., Zhang, S., & He, Y. (2024). Dynamic risk spillover and hedging efficacy of China’s carbon-energy-finance markets: Economic policy uncertainty and investor sentiment non-linear causal effects. International Review of Economics & Finance, 93, 1397-1416. https://doi.org/10.1016/j.iref.2024.03.066 DOI: https://doi.org/10.1016/j.iref.2024.03.066
Malik, F., & Ewing, B. T. (2009). Volatility transmission between oil prices and equity sector returns. International Review of Financial Analysis, 18(3), 95-100. https://doi.org/10.1016/j.irfa.2009.03.003 DOI: https://doi.org/10.1016/j.irfa.2009.03.003
Malik, F., & Umar, Z. (2019). Dynamic connectedness of oil price shocks and exchange rates. Energy Economics, 84, 104501. https://doi.org/10.1016/j.eneco.2019.104501 DOI: https://doi.org/10.1016/j.eneco.2019.104501
Maghyereh, A. I., Awartani, B., & Abdoh, H. (2019). The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations. Energy, 169, 895-913. https://doi.org/10.1016/j.energy.2018.12.039 DOI: https://doi.org/10.1016/j.energy.2018.12.039
Mensi, W., Al Rababa'a, A. R., Vo, X. V., & Kang, S. H. (2021). Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets. Energy Economics, 98, 105262. https://doi.org/10.1016/j.eneco.2021.105262 DOI: https://doi.org/10.1016/j.eneco.2021.105262
Miranda-Agrippino, S., & Rey, H. (2015). World asset markets and the global financial cycle. DOI: https://doi.org/10.3386/w21722
Mo, B., Nie, H., & Zhao, R. (2024). Dynamic nonlinear effects of geopolitical risks on commodities: Fresh evidence from quantile methods. Energy, 288, 129759. https://doi.org/10.1016/j.energy.2023.129759 DOI: https://doi.org/10.1016/j.energy.2023.129759
Naeem, M. A., Hasan, M., Arif, M., Suleman, M. T., & Kang, S. H. (2022). Oil and gold as a hedge and safe-haven for metals and agricultural commodities with portfolio implications. Energy Economics, 105, 105758. https://doi.org/10.1016/j.eneco.2021.105758 DOI: https://doi.org/10.1016/j.eneco.2021.105758
Nasreen, S., Tiwari, A. K., Eizaguirre, J. C., & Wohar, M. E. (2020). Dynamic connectedness between oil prices and stock returns of clean energy and technology companies. Journal of Cleaner Production, 260, 121015. https://doi.org/10.1016/j.jclepro.2020.121015 DOI: https://doi.org/10.1016/j.jclepro.2020.121015
Nekhili, R., Mensi, W., & Vo, X. V. (2021). Multiscale spillovers and connectedness between gold, copper, oil, wheat and currency markets. Resources Policy, 74, 102263. DOI: https://doi.org/10.1016/j.resourpol.2021.102263
Okorie, D. I., & Lin, B. (2020). Crude oil price and cryptocurrencies: evidence of volatility connectedness and hedging strategy. Energy economics, 87, 104703. https://doi.org/10.1016/j.eneco.2020.104703 DOI: https://doi.org/10.1016/j.eneco.2020.104703
Olson, E., Vivian, A. J., & Wohar, M. E. (2014). The relationship between energy and equity markets: Evidence from volatility impulse response functions. Energy Economics, 43, 297-305. https://doi.org/10.1016/j.eneco.2014.01.009 DOI: https://doi.org/10.1016/j.eneco.2014.01.009
Phan, D. H. B., Sharma, S. S., & Narayan, P. K. (2016). Intraday volatility interaction between the crude oil and equity markets. Journal of International Financial Markets, Institutions and Money, 40, 1-13. https://doi.org/10.1016/j.intfin.2015.07.007 DOI: https://doi.org/10.1016/j.intfin.2015.07.007
Raddant, M., & Kenett, D. Y. (2021). Interconnectedness in the global financial market. Journal of International Money and Finance, 110, 102280. https://doi.org/10.1016/j.jimonfin.2020.102280 DOI: https://doi.org/10.1016/j.jimonfin.2020.102280
Raza, S. A., Shah, N., & Shahbaz, M. (2018). Does economic policy uncertainty influence gold prices? Evidence from a nonparametric causality-in-quantiles approach. Resources Policy, 57, 61-68. https://doi.org/10.1016/j.resourpol.2018.01.007 DOI: https://doi.org/10.1016/j.resourpol.2018.01.007
Rehman, M. U., Shahzad, S. J. H., Uddin, G. S., & Hedström, A. (2018). Precious metal returns and oil shocks: A time varying connectedness approach. Resources Policy, 58, 77-89. https://doi.org/10.1016/j.resourpol.2018.03.014 DOI: https://doi.org/10.1016/j.resourpol.2018.03.014
Reyes, T. (2019). Negativity bias in attention allocation: Retail investors’ reaction to stock returns. International Review of Finance, 19(1), 155-189. https://doi.org/10.1111/irfi.12180 DOI: https://doi.org/10.1111/irfi.12180
Singh, V. K., Nishant, S., & Kumar, P. (2018). Dynamic and directional network connectedness of crude oil and currencies: Evidence from implied volatility. Energy Economics, 76, 48-63. https://doi.org/10.1016/j.eneco.2018.09.018 DOI: https://doi.org/10.1016/j.eneco.2018.09.018
Sim, N., & Zhou, H. (2015). Oil prices, US stock return, and the dependence between their quantiles. Journal of Banking & Finance, 55, 1-8. https://doi.org/10.1016/j.jbankfin.2015.01.013 DOI: https://doi.org/10.1016/j.jbankfin.2015.01.013
Sita, B. B., & Abdallah, W. (2014). Volatility links between the home and the host market for UK dual-listed stocks on US markets. Journal of International Financial Markets, Institutions and Money, 33, 183-199. https://doi.org/10.1016/j.intfin.2014.08.005 DOI: https://doi.org/10.1016/j.intfin.2014.08.005
Sun, X., Chen, X., Wang, J., & Li, J. (2020). Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains. The North American Journal of Economics and Finance, 51, 100854. https://doi.org/10.1016/j.najef.2018.10.002 DOI: https://doi.org/10.1016/j.najef.2018.10.002
Su, X. (2020). Dynamic behaviors and contributing factors of volatility spillovers across G7 stock markets. The North American Journal of Economics and Finance, 53, 101218. https://doi.org/10.1016/j.najef.2020.101218 DOI: https://doi.org/10.1016/j.najef.2020.101218
Tao, J., & Green, C. J. (2012). Asymmetries, causality and correlation between FTSE100 spot and futures: A DCC-TGARCH-M analysis. International Review of Financial Analysis, 24, 26-37. https://doi.org/10.1016/j.irfa.2012.07.002 DOI: https://doi.org/10.1016/j.irfa.2012.07.002
Tiwari, A. K., Trabelsi, N., Alqahtani, F., & Raheem, I. D. (2020). Systemic risk spillovers between crude oil and stock index returns of G7 economies: Conditional value-at-risk and marginal expected shortfall approaches. Energy Economics, 86, 104646. https://doi.org/10.1016/j.eneco.2019.104646 DOI: https://doi.org/10.1016/j.eneco.2019.104646
Walid Mensi, Muhammad Shafiullah, Sang Hoon Kang. (2021). Volatility spillovers between strategic commodity futures and stock markets and portfolio implications: Evidence from developed and emerging economies. Resources Policy, Elsevier, vol. 71(C). https://doi.org/10.1016/j.resourpol.2021.102002 DOI: https://doi.org/10.1016/j.resourpol.2021.102002
Wang, Y., Zhang, Z., Li, X., Chen, X., & Wei, Y. (2020). Dynamic return connectedness across global commodity futures markets: Evidence from time and frequency domains. Physica A: Statistical Mechanics and its Applications, 542, 123464. https://doi.org/10.1016/j.physa.2019.123464 DOI: https://doi.org/10.1016/j.physa.2019.123464
Wang, B., Wei, Y., Xing, Y., & Ding, W. (2019). Multifractal detrended cross-correlation analysis and frequency dynamics of connectedness for energy futures markets. Physica A: Statistical Mechanics and its Applications, 527, 121194. https://doi.org/10.1016/j.physa.2019.121194 DOI: https://doi.org/10.1016/j.physa.2019.121194
Wu, C., Li, J., & Zhang, W. (2005). Intradaily periodicity and volatility spillovers between international stock index futures markets. Journal of Futures Markets: Futures, Options, and Other Derivative Products, 25(6), 553-585. https://doi.org/10.1002/fut.20155 DOI: https://doi.org/10.1002/fut.20155
Xia, T., Yao, C. X., & Geng, J. B. (2020). Dynamic and frequency-domain spillover among economic policy uncertainty, stock and housing markets in China. International Review of Financial Analysis, 67, 101427. https://doi.org/10.1016/j.irfa.2019.101427 DOI: https://doi.org/10.1016/j.irfa.2019.101427
Xia, T., Ji, Q., Zhang, D., & Han, J. (2019). Asymmetric and extreme influence of energy price changes on renewable energy stock performance. Journal of Cleaner Production, 241, 118338. https://doi.org/10.1016/j.jclepro.2019.118338 DOI: https://doi.org/10.1016/j.jclepro.2019.118338
Yip, P. S., Brooks, R., Do, H. X., & Nguyen, D. K. (2020). Dynamic volatility spillover effects between oil and agricultural products. International Review of Financial Analysis, 69, 101465. https://doi.org/10.1016/j.irfa.2020.101465 DOI: https://doi.org/10.1016/j.irfa.2020.101465
Yoon, Mamun, Uddin and Kang. (2019). Network connectedness and net spillover between financial and commodity markets. https://doi.org/10.1016/j.najef.2018.08.012 DOI: https://doi.org/10.1016/j.najef.2018.08.012
Zhang, D., & Broadstock, D. C. (2020). The global financial crisis and rising connectedness in the international commodity markets. International Review of Financial Analysis, 68, 101239. https://doi.org/10.1016/j.irfa.2018.08.003 DOI: https://doi.org/10.1016/j.irfa.2018.08.003
Zhang, D., Hu, M., & Ji, Q. (2020). Financial markets under the global pandemic of COVID-19. Finance research letters, 36, 101528. https://doi.org/10.1016/j.frl.2020.101528 DOI: https://doi.org/10.1016/j.frl.2020.101528
Zhang, X., Lv, Z., Naeem, M. A., Rauf, A., & Liu, J. (2024). Decomposing risk spillover effect in international stock market: A novel intertemporal network topology approach. Finance Research Letters, 63, 105371. https://doi.org/10.1016/j.frl.2024.105371 DOI: https://doi.org/10.1016/j.frl.2024.105371